Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(16): 17977-17988, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38680339

RESUMO

Despite the technological importance of semiconductor black phosphorus (BP) in materials science, maintaining the stability of BP crystals in organic media and protecting them from environmental oxidation remains challenging. In this study, we present the synthesis of bulk BP and the exploitation of the viscoelastic properties of a regenerated silk fibroin (SF) film as a biocompatible substrate to transfer BP flakes, thereby preventing oxidation. A model based on the flow of polymers revealed that the applied flow-induced stresses exceed the yield stress of the BP aggregate. Raman spectroscopy was used to investigate the exfoliation efficiency as well as the environmental stability of BP transferred on the SF substrate. Notably, BP flakes transferred to the SF substrate demonstrated improved stability when SF was dissolved in a phosphate-buffered saline medium, and in vitro cancer cell viability experiments demonstrate the tumor ablation efficiency under visible to near-infrared (Vis-nIR) radiation. Moreover, the SF and BP-enriched SF (SF/BP) solution was shown to be processable via extrusion-based three-dimensional (3D) printing. Therefore, this work paves the way for a general method for the transferring of BP on natural biodegradable polymers and processing them via 3D printing toward novel functionalities and complex shapes for biomedical purposes.

2.
Sci Rep ; 13(1): 1690, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717645

RESUMO

In this study, Brillouin and Raman micro-Spectroscopy (BRamS) and Machine Learning were used to set-up a new diagnostic tool for Osteoarthritis (OA), potentially extendible to other musculoskeletal diseases. OA is a degenerative pathology, causing the onset of chronic pain due to cartilage disruption. Despite this, it is often diagnosed late and the radiological assessment during the routine examination may fail to recognize the threshold beyond which pharmacological treatment is no longer sufficient and prosthetic replacement is required. Here, femoral head resections of OA-affected patients were analyzed by BRamS, looking for distinctive mechanical and chemical markers of the progressive degeneration degree, and the result was compared to standard assignment via histological staining. The procedure was optimized for diagnostic prediction by using a machine learning algorithm and reducing the time required for measurements, paving the way for possible future in vivo characterization of the articular surface through endoscopic probes during arthroscopy.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Cartilagem Articular/patologia , Osteoartrite/diagnóstico por imagem , Osteoartrite/patologia , Análise Espectral Raman , Cabeça do Fêmur/patologia , Coloração e Rotulagem
3.
Sci Adv ; 8(26): eabo4221, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35767625

RESUMO

Correlative Brillouin and Raman microspectroscopy (BRaMS) is applied for the in situ monitoring of the chemical and physical changes of linseed oil during polymerization. The viscoelastic properties of the drying oil throughout the phase transition were determined by Brillouin light scattering (BLS) and joined to the Raman spectroscopic information about the chemical process responsible for the oil hardening. A comparative study was then performed on an oil mock-up containing ZnO, one of the most common white pigments used in cultural heritage. The intriguing outcomes open new research perspectives for a deeper comprehension of the processes leading to the conversion of a fluid binder into a dry adhering film. The description of both chemical and structural properties of the polymeric network and their evolution are the basis for a better understanding of oil painting degradation. Last, as a feasibility test, BRaMS was applied to study a precious microfragment from J. Pollock's masterpiece Alchemy.

4.
Materials (Basel) ; 14(22)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34832271

RESUMO

Human bone is a specialized tissue with unique material properties, providing mechanical support and resistance to the skeleton and simultaneously assuring capability of adaptation and remodelling. Knowing the properties of such a structure down to the micro-scale is of utmost importance, not only for the design of effective biomimetic materials but also to be able to detect pathological alterations in material properties, such as micro-fractures or abnormal tissue remodelling. The Brillouin and Raman micro-spectroscopic (BRmS) approach has the potential to become a first-choice technique, as it is capable of simultaneously investigating samples' mechanical and structural properties in a non-destructive and label-free way. Here, we perform a mapping of cortical and trabecular bone sections of a femoral epiphysis, demonstrating the capability of the technique for discovering the morpho-mechanics of cells, the extracellular matrix, and marrow constituents. Moreover, the interpretation of Brillouin and Raman spectra merged with an approach of data mining is used to compare the mechanical alterations in specimens excised from distinct anatomical areas and subjected to different sample processing. The results disclose in both cases specific alterations in the morphology and/or in the tissue chemical make-up, which strongly affects bone mechanical properties, providing a method potentially extendable to other important biomedical issues.

5.
J Biophotonics ; 14(6): e202000483, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33768666

RESUMO

Brillouin microscopy is a new form of optical elastography and an emerging technique in mechanobiology and biomedical physics. It was applied here to map the viscoelastic properties of human hair and to determine the effect of bleaching on hair properties. For hair samples, longitudinal measurements (i.e. along the fibre axis) revealed peaks at 18.7 and 20.7 GHz at the location of the cuticle and cortex, respectively. For hair treated with a bleaching agent, the frequency shifts for the cuticle and cortex were 19.7 and 21.0 GHz, respectively, suggesting that bleaching increases the cuticle modulus and-to a minor extent-the cortex modulus. These results demonstrate the capability of Brillouin spectroscopy to address questions on micromechanical properties of hair and to validate the effect of applied treatments.


Assuntos
Cabelo , Microscopia , Humanos , Análise Espectral
6.
Appl Spectrosc ; 75(5): 574-580, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33319606

RESUMO

In this work, we report the application of Raman microspectroscopy for analysis of the refractive index of a range of tissue phantoms. Using both a custom-developed setup with visible laser source and a commercial microspectrometer with near infrared laser, we measured the Raman spectra of gelatin hydrogels at various concentrations. By building a calibration curve from measured refractometry data and Raman scattering intensity for different vibrational modes of the hydrogel, we were able to predict the refractive indices of the gels from their Raman spectra. This work highlights the importance of a correlative approach through Brillouin-Raman microspectroscopy for the mechano-chemical analysis of biologically relevant samples.


Assuntos
Refratometria , Análise Espectral Raman , Hidrogéis , Luz , Vibração
7.
Sci Adv ; 6(44)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33127678

RESUMO

Many problems in mechanobiology urgently require characterization of the micromechanical properties of cells and tissues. Brillouin light scattering has been proposed as an emerging optical elastography technique to meet this need. However, the information contained in the Brillouin spectrum is still a matter of debate because of fundamental problems in understanding the role of water in biomechanics and in relating the Brillouin data to low-frequency macroscopic mechanical parameters. Here, we investigate this question using gelatin as a model system in which the macroscopic physical properties can be manipulated to mimic all the relevant biological states of matter, ranging from the liquid to the gel and the glassy phase. We demonstrate that Brillouin spectroscopy is able to reveal both the elastic and viscous properties of biopolymers that are central to the structure and function of biological tissues.

8.
Data Brief ; 29: 105223, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32090158

RESUMO

The distribution of chemical species and the mechanical modulation inside a single cell or tissue are of fundamental importance to characterize their physiological activity or their pathological conditions [1-4]. Here we analyse these properties by means of label free, non invasive, spectroscopic methods. In particular, we use a recently developed micro-spectrometer, which acquires simultaneously Raman and Brillouin spectra on the same point with subcellular resolution [5]. The techniques ability to analyse the chemical composition and the mechanical properties of single cells has been tested on NIH/3T3 murine fibroblast cells grown in adhesion on silicon substrates. Here we report the data acquired from fixed cells after their oncogenic transformation. Mechanical and chemical evolution is evident by direct inspection of raw data. Sharing our experimental records can be valuable for researchers interested in the analysis of single cells by Raman and Brillouin spectroscopy in order: i) to compare data acquired by different set-ups and ii) to correctly model the fitting functions.

9.
Biophys Chem ; 254: 106249, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31454612

RESUMO

An increasing effort is currently devoted to developing Raman spectroscopy for identification of microorganisms. Micro-Raman setups are typically used for this purpose with the limit that the intra-species and inter-species spectral variability are comparable, thus limiting the identification capability. To overcome this limit a meso-Raman approach is here implemented. Thin films of planktonic cells are analyzed throughout the collection of back-scattered light providing a Raman signal already averaged over tens of cells. The collecting of unpolarized (VU) and depolarized (HV) Raman signals increased the spectral information obtainable from the data, demonstrating the ability of the principal component analysis to differentiate the most common Candida species, namely C. glabrata, C. albicans, C. parapsilosis and C. tropicalis. The proposed method can contribute to bring Raman spectroscopy closer to its potential clinical use for fast identification of yeast cells.


Assuntos
Candida/química , Análise Espectral Raman/métodos , Candida/isolamento & purificação , Análise de Componente Principal
10.
Infect Dis Ther ; 7(Suppl 1): 27-34, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29549654

RESUMO

Medical and environmental microbiology have two distinct, although very short, histories stemming, the first from the pioneering works of Sommelweiss, Pasteur, Lister and Koch, the second mainly from the studies of Bejerink and Winogradsky. These two branches of microbiology evolved and specialized separately producing distinct communities and evolving rather different approaches and techniques. The evidence accumulated in recent decades indicate that indeed most of the medically relevant microorganisms have a short circulation within the nosocomial environment and a larger one involving the external, i.e. non-nosocomial, and the hospital environments. This evidence suggests that the differences between approaches should yield to a convergent approach aimed at solving the increasing problem represented by infectious diseases for the increasingly less resistant human communities. Microbial biofilm is one of the major systems used by these microbes to resist the harsh conditions of the natural and anthropic environment, and the even worse ones related to medical settings. This paper presents a brief outline of the converging interest of both environmental and medical microbiology toward a better understanding of microbial biofilm and of the various innovative techniques that can be employed to characterize, in a timely and quantitative manner, these complex structures. Among these, micro-Raman along with micro-Brillouin offer high hopes of describing biofilms both at the subcellular and supercellular level, with the possibility of characterizing the various landscapes of the different biofilms. The possibility of adding a taxonomic identification of the cells comprising the biofilm is a complex aspect presenting several technical issues that will require further studies in the years to come.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...